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Abstract

This study derived an expectation-maximization (EM) algorithm for estimating the

parameters of multidimensional item response models. A genetic algorithm (GA) was

developed to be used in the maximization step in each EM cycle. The focus of the EM-GA

algorithm developed in this paper was on multidimensional items with mixed structure.

Simulated item response data were generated and then estimated by a computer program

based on the EM-GA algorithm. The simulation results demonstrate that the EM-GA

algorithm is a very promising approach in estimating multidimensional item response model

parameters.

Key words: Genetic algorithm, GA, EM-GA algorithm, ASSEST, estimation,

multidimensional item response theory, MIRT, mixed structure, approximate simple

structure
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1. Introduction

Educational or psychological tests usually have several target content areas or subscales

to measure. For example, the Graduate Record Examinations r© (GRE r©) General Test

measures analytical writing, verbal, and quantitative skills. These tests are typically

composed of several sections or subsets of items measuring different subscales. Items

measuring the same content area are assumed to be unidimensional; that is, these tests are

multidimensional with simple structure. In practice, however, some items may actually be

contaminated in the sense that knowledge in other subscales is helpful for an examinee to

get correct answers for these items, although the test is designed to have simple structure.

Moreover, a test framework may explicitly require some items to measure more than one

subscale in its assessment. For example, the National Assessment Governing Board (NAGB;

1994, p. 13) stated in the Mathematics Framework for the 1996 National Assessment

of Educational Progress (NAEP) that some items in the assessment “should have major

elements drawn from more than one strand.” Such a test has no simple structure.

In this paper, an item simply measuring one subscale (content strand or skill) is called a

pure item, and an item measuring more than one subscale is a mixed item. If a test consists

of pure items only, it is a simple structure test; otherwise, it is called a mixed structure

test. In other words, a mixed structure test contains items measuring several subscales,

such as a mathematics item that measures both algebra and geometry and items measuring

only one subscale as well. The mixed structure assumption is the natural generalization of

simple structure and at the same time satisfies the request from some test frameworks that

some items should measure several subscales. The content/categorical nature of many test

specifications should typically yield mixed structure tests. In practice, some mixed items,

according to their contexts, measure one subscale to a greater extent than other subscales.

Usually a parameter estimation program can confirm that in its output. However, response

data may be very noisy. Thus, sometimes it is preferable to add some constraints on certain

mixed items during calibration so that their estimation results are consistent with their

contexts. Such mixed items are called semimixed in this paper. For example, a one-subscale

dominated item may be treated as a semimixed item. In other words, the treatment of
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a mixed item as semi-mixed is equivalent to using the prior information that this item

mainly measures one subscale. To model item response data from a mixed structure test,

multidimensional item response theory (MIRT) should be used.

There is literature on multidimensional item estimation. NOHARM (normal ogive

harmonic analysis related method) (Fraser, 1988; Fraser & McDonald, 1988) and

TESTFACT (test scoring, item statistics, and item factor analysis) (Wilson, Wood,

& Gibbons, 1991) are the two most commonly used multidimensional item response

estimation programs. NOHARM uses common factor analysis methodology to estimate

item parameters for both unidimensional and multidimensional normal ogive models, while

TESTFACT applies full-information factor analysis methodology. These two programs yield

similar results (Miller, 1991). With sample sizes over 1,000 and test lengths long enough,

these programs have been found to give stable parameter estimates that can be used for a

number of applications. However, they are not ready to be applied to the mixed structure

case mentioned above because of their limitations. For example, NOHARM can deal with

two-parameter multidimensional normal ogive models with mixed structure but cannot

deal with three-parameter models that are usually required to model multiple-choice items.

Moreover, neither program can deal with semi-mixed items. Therefore, it is necessary to

develop appropriate analysis procedures for dealing with the mixed structure case in order

to adequately reflect the intent of test frameworks.

The main purpose of this paper is to develop an algorithm to calibrate items of

multidimensional tests with mixed structure. In Section 2, multidimensional item response

models are introduced and the expectation-maximization (EM) algorithm used to search for

marginal maximum likelihood estimates (MMLE) is derived. A genetic algorithm (GA) is

developed in Section 3. The GA is used in the maximization step in each EM cycle. A GA

is a computational algorithm that incorporates ideas from genetics and/or evolution (e.g.,

breeding, mutation, crossover, and survival of the fittest) to solve optimization problems.

Section 4 presents some simulation results using the EM-GA algorithm developed in

Sections 2 and 3, and Section 5 provides further discussion.
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2. MIRT Models and the EM Algorithm

Suppose there is a test with n dichotomously scored items, and Xi is the score on item i

for a randomly selected examinee from a certain population. The item response function

(IRF) is defined as the probability of answering an item correctly for a randomly selected

examinee with ability vector θ = (θ1, θ2, . . . , θd), where d is the number of dimensions of the

test. That is, Pi(θ) = P (Xi = 1 | θ).

One widely used MIRT model is the multidimensional compensatory three-parameter

logistic (M3PL) model. Its IRF is

Pi(θ) = ci + (1− ci)
1

1 + exp{−1.7(
∑d

k=1 aikθk − di)}
(1)

where

aik (k = 1, . . . , d) are the discrimination parameters (nonnegative and not all zero),

di is the parameter that is related to the difficulty of item i, and

ci is the lower-asymptote parameter (0 ≤ ci < 1).

All discrimination parameters are required to be nonnegative so that the IRF is a

nondecreasing function of all abilities. When ci is set to be zero, the M3PL model becomes

a multidimensional two-parameter logistic (M2PL) model (see Reckase, 1985; Reckase &

McKinley, 1991). The M3PL model (1) is often reparametrized as

Pi(θ) = ci + (1− ci)
1

1 + exp{−1.7
∑d

k=1 aik(θk − bi)}
(2)

where bi = di/
∑d

k=1 aik, so that the difficulty parameter is directly comparable with that in

the usual expression of a unidimensional three-parameter logistical (3PL) model (see Lord,

1980).

There is a discrimination parameter for each dimension being modeled, but only one

parameter relating to the overall item difficulty in the model (1) or (2). Using a distinct

difficulty parameter for each separate dimension would lead to an indeterminate (i.e.,

unidentifiable) solution, hence that is statistically inappropriate. Since the term in the

exponent is a linear combination of abilities, high ability values on some dimensions can
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be compensated for low ability values on the other dimensions. For item response data

modeled by compensatory models, the discrimination parameter vector is the unique

factor to determine the dimensional structure of an item. When there is only one nonzero

discrimination parameter, the M3PL model (2) becomes a unidimensional 3PL model.

Theoretically, any coordinate system can be used in MIRT. However, the constraint

that all discrimination parameters are nonnegative requires that a coordinate system should

be chosen such that all discrimination vectors lie in the first quadrant, as shown in Figure 1.

Figure 1 graphically represents a two-dimensional mixed structure test, where θ∗1 and θ∗2 are

canonical coordinate axes in the sense that they are not correlated. In practice, many test

frameworks often stipulate that their test items measure several subscales (content strands,

or content areas). These target subscales, shown as θ1 and θ2, are preferable in use as the

coordinate axes, rather than θ∗1 and θ∗2, since such a coordinate system has substantive

meaning, as would be the case with algebra and geometry in a mathematics test. These

subscales are anchored by items selected by test developers and/or through dimensionality

analysis. Note that θ1 and θ2 are positively correlated. The anchor items lying along the

axes are the pure items and other items are mixed items, as discussed in Section 1. Note

that if a canonical coordinate system, such as θ∗1 and θ∗2 shown in Figure 1, is used, then

every item in Figure 1 measures both θ∗1 and θ∗2 and thus, is a mixed item with respect to θ∗1

and θ∗2. When this paper discusses pure or mixed items (i.e., items measuring one subscale

or more than one subscale), it always refers to the target subscales.

In theory, items determine what subscales a test measures. Therefore, θ1 and θ2 could

just be two composites of latent variables. In Figure 1, for example, θ1 and θ2 are expected

to be in alignment with two sets of pure items. The substantive meanings of θ1 and θ2

should be determined by the pure items. If the first set of pure items measures algebra,

then θ1 is the algebra subscale. That is the reason why pure items are sometimes called

anchor items; they anchor the subscales. When item i is pure, either ai1 or ai2 is zero in

(2) for d = 2. Under the simple structure assumption, there is one and only one nonzero

discrimination parameter for each item. In other words, each item in a simple structure test

measures θ1 or θ2 only. If ai1 is relatively large (say ai1 = 1.0) and ai2 is relatively small
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(say ai2 = 0.5), the ith item mainly measures θ1 since the probability variation due to a

change in θ1 value is larger than that due to a change in θ2. According to their contexts,

some (mixed) items measure one subscale to a greater extent than the other. If such prior

information is used during item parameter estimation, these items are considered to be

semimixed, as explained in Section 1. That is, when a mixed item is specified as semimixed,

a constraint, a1 > a2 or a1 < a2, is imposed in the model during item parameter estimation,

depending on whether the item is a first subscale predominant item or a second subscale

predominant item.

- θ∗1
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Figure 1. A two-dimensional test with mixed structure.

The marginal maximum likelihood estimation approach (Bock & Aitkin, 1981) is used

in this paper. The prior distribution of the abilities is assumed to be a multivariate normal

distribution. Without loss of generality, one can standardize the abilities so that they have

means of zero and variances of one. The correlation coefficients between the abilities are

unknown parameters that also need to be estimated. Generally speaking, there is a linear

indeterminacy of the ability scales in the M2PL/M3PL models; that is, any nonsingular

linear transformation can be made for abilities. In this paper, the target subscales are used

as coordinate axes, which is determined by pure items, and hence no linear transformation
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is allowed here. In practice, every item measuring only one content area should be regarded

as a pure item, unless there is some evidence it is not, based on either its context or the

results of dimensionality analysis. Note that under the simple structure assumption, every

item is a pure item.

The marginal likelihood function can be calculated as below. By local independence,

the joint probability of a particular response pattern xj = (x1j, . . . , xnj) across a set of n

items given the jth examinee’s θj is

P (xj | θj,Γ) =
n∏

i=1

Pi(θj)
xij(1− Pi(θj))

1−xij , j = 1, 2, . . . ,m, (3)

where Pi(θ) is the IRF, Γ is the set of item parameters, and m is the number of examinees.

For a randomly sampled examinee j from a population with the prior distribution ϕ(θ | ρ),

the marginal probability of an observed response pattern xj is

P (xj | ρ,Γ) =

∫
· · ·

∫
P (xj | θj,Γ)ϕ(θj | ρ)dθj,

where ρ denotes the (unknown) correlation coefficients between subscales. The marginal

likelihood function of the response patterns x1, x2, . . . ,xm from m randomly sampled

examinees is given by

L(ρ,Γ;X) =
m∏

j=1

P (xj | ρ,Γ),

where

X =


x1

x2

...

xm


is the response data matrix. The natural logarithm of the marginal likelihood function is

log L(ρ,Γ;X) =
m∑

j=1

log

∫
· · ·

∫
P (xj | θ,Γ)ϕ(θ | ρ)dθ. (4)

For convenience, the j subscript on θ is dropped in the above equation and in subsequent

expressions whenever θ is a dummy variable.
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The MMLEs of the unknown parameters ρ and Γ are based on the information provided

by the response data X and are obtained by maximizing the log marginal likelihood

function (4). However, it is not feasible to compute the MMLE directly by maximizing

(4) unless the number of items is small (e.g., 6). For example, there are 2n unknown

parameters in (4), even in the simplest case that the test is unidimensional and all items

are modeled by two-parameter logistic functions. The MMLE method becomes practical

only when an EM algorithm is used (see Bock & Aitkin, 1981). The EM algorithm is an

iterative method for finding maximum likelihood estimates of parameters for probability

models (Dempster, Laird & Rubin, 1977). Each iteration consists of two steps: the E step

(expectation step) and the M step (maximization step). In the E step, the conditional

expectation (i.e., the posterior expectation) of the log likelihood function for complete data

is computed given provisional estimated item parameters and the observed (incomplete)

data. In the M step, the posterior expectation is maximized with respect to parameters to

obtain updated estimated parameters. This process is repeated until a certain convergence

criterion is met (e.g., likelihood function value and all item parameter estimates become

stable to some degree). For details, see Baker (1992) and Tanner (1996).

In IRT settings, latent traits are treated as latent (missing) data in the EM algorithm.

The observed data X and latent traits are regarded as the complete data. Thus, the log

likelihood function of complete data is

log f(X, θ1, . . . ,θm | ρ,Γ) = log
m∏

j=1

P (xj | θj,Γ)ϕ(θj | ρ)

=
m∑

j=1

log P (xj | θj,Γ) +
m∑

j=1

log ϕ(θj | ρ)

=
n∑

i=1

m∑
j=1

[xij log Pi(θj) + (1− xij) log(1− Pi(θj))]

+
m∑

j=1

log ϕ(θj | ρ). (5)

The posterior ability distribution given xj is

p(θj | xj, ρ,Γ) =
P (xj | θj,Γ)ϕ(θj | ρ)∫

· · ·
∫

P (xj | θj,Γ)ϕ(θj | ρ)dθj

. (6)
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By (5) and (6), the posterior expectation of the log likelihood function for complete data,

given provisional estimated parameters (i.e., ρ∗ and Γ∗) and the observed data X, can be

obtained:

Q(Γ, ρ;Γ∗, ρ∗) = E[log f(X, θ1, . . . ,θm | ρ,Γ) | X,Γ∗, ρ∗]

=
n∑

i=1

[∫
· · ·

∫ m∑
j=1

xijp(θ | xj, ρ
∗,Γ∗) log Pi(θ)dθ

+

∫
· · ·

∫ m∑
j=1

(1− xij)p(θ | xj, ρ
∗,Γ∗) log(1− Pi(θ))dθ

]

+

∫
· · ·

∫ m∑
j=1

p(θ | xj, ρ
∗,Γ∗) log ϕ(θ | ρ)dθ

=
n∑

i=1

Qi(γi;Γ
∗, ρ∗) + Q0(ρ;Γ∗, ρ∗) (7)

where γi is the set of item parameters of item i (in Pi(θ)),

Qi(γi;Γ
∗, ρ∗) =

∫
· · ·

∫
Ri(θ) log Pi(θ)dθ

+

∫
· · ·

∫
[R0(θ)−Ri(θ)] log(1− Pi(θ))dθ, (8)

Q0(ρ;Γ∗, ρ∗) =

∫
· · ·

∫
R0(θ) log ϕ(θ | ρ)dθ, (9)

Ri(θ) =
m∑

j=1

xijp(θ | xj, ρ
∗,Γ∗), (10)

R0(θ) =
m∑

j=1

p(θ | xj, ρ
∗,Γ∗). (11)

The objective of the M step in an EM cycle is to find the Γ̂ and ρ̂ such that

Q(Γ, ρ;Γ∗, ρ∗) is maximized at Γ̂ and ρ̂. According to (7), the maximization of

Q(Γ, ρ;Γ∗, ρ∗) can be carried out via the maximization of both Q0(ρ;Γ∗, ρ∗) and

Qi(γi;Γ
∗, ρ∗) for each item singly. That is, one only need to find a ρ̂ such that Q0(ρ;Γ∗, ρ∗)

is maximized at ρ̂, and a γ̂i such that Qi(γi;Γ
∗, ρ∗) is maximized at γ̂i for i = 1, 2, . . . , n.

The EM algorithm developed in this paper is briefly described as follows:

1. Initialization. The initial values for parameters are either provided by the user or
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generated by the program as default values. The default initial values for parameters

are set as follows:

• The correlation coefficients between abilities are set either to 0.5 or at the value

of the sample correlations between observed raw (number-correct) scores of re-

spective subtests.

• The discrimination parameters are set at 1, except for secondary dimensions in

semimixed cases. The discrimination parameters for secondary dimensions of

semimixed items are set to be 0.5 (e.g., for a two-dimensional first-scale domi-

nated semimixed item, the default values of a1 and a2 are set to be 1 and 0.5,

respectively).

• The guessing parameters for 3PL models are set at 0.2.

• The difficulty parameters are set at the values of the inverse of the logistic function

at the mean scores of the respective items.

Note that the program can be used sequentially; that is, the estimated item parameters

from the previous run (as a whole or as a part) can be used as the initial item parameters

for the next run.

2. The E step.

Compute Ri(θ) and R0(θ) in (10) and (11), given provisional item parameter estimates

Γ∗ and provisional correlation estimates ρ∗.

3. The M step.

• The Qi(γi;Γ
∗, ρ∗) function in (8) is maximized with respect to γi to obtain the

updated estimate for γi, given provisional item parameter estimates Γ∗ and pro-

visional correlation estimates ρ∗ for i = 1, 2, . . . , n.

• The Q0(ρ;Γ∗, ρ∗) function in (9) is maximized with respect to ρ to obtain the

updated estimate for ρ given provisional item parameter estimates Γ∗ and provi-

sional correlation estimates ρ∗.
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4. The stopping rule.

If the log marginal likelihood is unchanged from the previous cycle, the parameter

estimation process has converged and the process is terminated. Otherwise, steps 2

and 3 are repeated.

The Newton-Raphson method is used to maximize Q0(ρ;Γ∗, ρ∗) with respect to ρ. For

easy presentation, this paper uses a two-dimensional case as an example to describe the

method. In a two-dimensional case, the prior distribution of latent traits is

ϕ(θ | ρ) ≡ ϕ(θ1, θ2 | ρ) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
θ2
1 − 2ρθ1θ2 + θ2

2

)}
, (12)

where ρ is the correlation coefficient between the two latent traits. Some useful derivatives

are as follows:

∂

∂ρ

(
log ϕ(θ | ρ)

)
=

ρ

1− ρ2
+

1

(1− ρ2)2
[(1 + ρ2)θ1θ2 − ρ(θ2

1 + θ2
2)],

∂2

∂ρ2

(
log ϕ(θ | ρ)

)
=

1 + ρ2

(1− ρ2)2
+

1

(1− ρ2)2
[2ρθ1θ2 − (θ2

1 + θ2
2)],

+
4ρ

(1− ρ2)3
[(1 + ρ2)θ1θ2 − ρ(θ2

1 + θ2
2)].

Therefore,

Q′
0(ρ;Γ∗, ρ∗) =

∫ ∫
R0(θ)

∂

∂ρ

(
log ϕ(θ | ρ)

)
dθ

=
mρ

1− ρ2
+

1

(1− ρ2)2
[(1 + ρ2)A− ρB],

Q′′
0(ρ;Γ∗, ρ∗) =

∫ ∫
R0(θ)

∂2

∂ρ2

(
log ϕ(θ | ρ)

)
dθ

=
m(1 + ρ2)

(1− ρ2)2
+

1

(1− ρ2)2
(2ρA−B) +

4ρ

(1− ρ2)3
[(1 + ρ2)A− ρB],

where

A =

∫ ∫
θ1θ2R0(θ1, θ2)dθ1dθ2,

B =

∫ ∫
(θ2

1 + θ2
2)R0(θ1, θ2)dθ1dθ2.
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The iterative formula for the Newton-Raphson method is

ρk+1 = ρk −
Q′

0(ρk;Γ
∗, ρ∗)

Q′′
0(ρk;Γ∗, ρ∗)

, k = 1, 2, . . . (13)

The Newton-Raphson method could also be used in the maximization step to find

the γi such that Qi(γi;Γ
∗, ρ∗) is maximized. However, there are several item parameters

with many constraints under the mixed structure assumption. In such a case, the

Newton-Raphson method is not effective and feasible. Besides, in general, the log likelihood

function may have multiple modes and/or saddle points (see Tanner, 1996). In order to

improve upon the EM algorithm, a GA is developed and used in the maximization step.

That is, a GA is used to find γ̂ such that Qi(γ;Γ∗, ρ∗) is maximized at γ̂, given Γ∗ and ρ∗.

3. Genetic Algorithm in the Maximization Step of the EM Algorithm

The basic notion of a GA is to mimic the principles of natural evolution. A GA starts

with a set (called population) of potential solutions (each solution is called an individual) to

the problem at hand. Then, it stochastically optimally selects individuals as parents of the

next generation and lets the selected individuals clone, mutate, and combine some of their

components to form new individuals. This process proceeds over successive generations

until one cannot find an individual better than the optimal individual one has gotten so far.

Currently, GAs have been quite successfully applied to many optimization problems (see

Michalewicsz, 1994; Jiang & Tang, 1998; Zhang & Stout, 1999).

A GA is developed in this paper to find γ̂ such that Qi(γ;Γ∗, ρ∗) is maximized at γ̂,

given Γ∗ and ρ∗. For concreteness, a two-dimensional 3PL model is used to describe the

algorithm. Recall that the IRF of a two-dimensional item is

P (θ1, θ2) = c + (1− c)
1

1 + exp{−1.7[a1(θ1 − b) + a2(θ2 − b)]}
, (14)

where a1 and a2 are nonnegative and not all zero. Note that the subscript of item sequence

is not used here for convenience since this section focuses on one item. Thus, the notation

in this section is different from other sections in this paper. There are five types of items

with different dimensional structure that can be represented by model (14). They are
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first-subscale or second-subscale pure items, first-subscale or second-subscale dominated

semimixed items, and mixed items. When an item is a first-subscale (or second-subscale)

pure item, a2 (or a1) is fixed to be zero in (14), which becomes a unidimensional 3PL

model. When an item is specified as a first-subscale (or second-subscale) dominated item,

a constraint, a1 > a2 ≥ 0 (or a2 > a1 ≥ 0), will be imposed. The algorithm treats each of

those five types of items differently by imposing different constraints or no constraint at all.

Below a first-subscale dominated item is used as an example to describe the algorithm since

the treatments for the other types of items are either similar or less complicated.

In the GA, any vector γ = (a1, a2, b, c) with a1 > a2 ≥ 0 is regarded as a potential

solution that may maximize Qi(γ;Γ∗, ρ∗) for a first-subscale dominated item. The

population in this GA consists of those vectors (i.e., individuals). The population size,

denoted as M , is the number of individuals in the population. Recall that in a GA a

potential solution is called an individual and a specified whole set of individuals is called

the population. Generally speaking, the larger the population size, the greater the chance of

getting the optimal solution. However, there is a tradeoff between accuracy and efficiency.

When the population size is larger, the computer program will take a longer time to run.

Typically, the population size can be chosen from any number between 30 to 100 (the

default number is 80), and once chosen, it is fixed during the evolution process.

There are two basic genetic operators in the GA: mutation and crossover. Generally,

mutation arbitrarily alters some genes of a selected individual. For details, see Michalewicsz

(1994). A mutation operator used in this paper is the following transformation:

γ = (a1, a2, b, c) mutates to be γ∗ = (a∗1, a
∗
2, b

∗, c∗) with

a∗1 = a1 + ε1,

a∗2 = a2 + ε2,

b∗ = b + ε3,

c∗ = c + ε4,

where εi are independent random variables. All of the εi are chosen to be normal with

means of zero and are truncated with certain lower and upper bounds so that the new
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parameters after mutation are within reasonable ranges. After each mutation, the program

will check whether γ∗ is a legitimate individual or not (e.g., check whether it satisfies

constraints, such as a∗1 > a∗2 ≥ 0). Some treatments will be applied to the new individual

if it does not satisfy the constraints. For example, if the constraint, a∗1 > a∗2 ≥ 0, does not

hold, a positive random number will be subtracted from a∗2 so that the new a∗2 is between

zero and a∗1. Note that this is the only place where all constraints are enforced. Then, the

original individual is replaced by the new one.

In this paper, a crossover operator is defined to be a binary transformation. Suppose

that γ1 = (a11, a12, b1, c1) and γ2 = (a21, a22, b2, c2) are two individuals. The crossover

operator randomly exchanges some components between γ1 and γ2 to form two new

individuals. For example, one possible result after a crossover is two new individuals

γ∗
1 = (a11, a12, b2, c1) and γ∗

2 = (a21, a22, b1, c2), for which the third components b1 and b2

have been exchanged with each other. Then, the original pair is discarded.

The GA developed in this paper is described as follows:

Step 1. Initialization.

First, the initial potential solution γ0 is the provisional estimate of the item

parameter vector from the previous M step or the initial item parameter vector if the

GA is being used in the first cycle of the EM algorithm. See Section 2 for details

about how to provide the initial values for item parameters in the EM algorithm.

Then, let γ0 mutate repeatedly and independently to generate some individuals

(about 85% of the population size). The initial population consists of these

individuals and some clones of γ0 (individuals exactly the same as γ0). Finally,

Qi(γ;Γ∗, ρ∗) is calculated for each individual in the initial population. The Qi value

is the measure of the fitness of the individual: The larger the Qi value is, the more

suitable (better) the individual is.

Step 2. Selection.

The selection process is based on fitness of individuals. First, all individuals in the

current population are ordered according to their Qi values from the smallest to the
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largest. Then, M individuals are sampled randomly with replacement from the

population (M is the population size). The probability of each individual being

selected is proportional to its rank. The better the individual, the greater the chance

of being selected. The M selected individuals constitute an updated population,

which will be used in the next step. Note that there is a large chance that good

individuals are selected more than once while some bad individuals may never be

selected.

Step 3. Breeding.

The crossover and mutation operators are used to produce new individuals. For each

individual there is some chance of being selected to mutate (e.g., 50% chance) and of

being crossed over with another selected individual (e.g., 30% chance). The

probabilities of being able to mutate and being crossed are determined empirically.

Usually they are set to be between 30% to 70% for mutation and between 10% to

40% for crossover. Once set, they are fixed throughout the process for every

individual. See Michalewicsz (1994) for more discussion about the selection of those

probabilities. Those new individuals, together with the remaining individuals (i.e.,

their clones), constitute the next generation population.

Step 4. Evaluation.

Calculate Qi(γ;Γ∗, ρ∗) for each individual in the population from Step 3. Record the

maximum Qi(γ;Γ∗, ρ∗) value. If this value does not change (increase) much when

compared to the previous generations’ maximum values, then the GA stops.

Otherwise Steps 2, 3, and 4 are repeated.

The idea behind a GA is to do what nature does. What the selection and breeding

steps in the GA do is to let good individuals have a relatively large chance to produce

offspring, while some bad individuals produce no offspring. In other words, at each

generation, relatively good individuals have a relatively large chance of being reproduced,

while relatively bad individuals may die without reproduction. However, the GA still allows

some lucky bad individuals to be selected and lets them survive and reproduce. After all,

a bad individual itself, or with another individual, might produce very good offspring.
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Therefore, the GA performs a multidirectional search to find the global optimal solution.

After several generations, the GA converges and the best individual in the last generation

is claimed to be a near optimal solution.

4. Simulation Studies

The EM-GA algorithm presented in Sections 2 and 3 has been implemented in a

Fortran program called ASSEST, short for Approximate Simple Structure ESTimation. To

investigate its performance, ASSEST was used to estimate item parameters with simulated

unidimensional and two-dimensional response data. Item parameter estimates obtained

from ASSEST were compared with the true ones. The root mean-squared error (RMSE)

of the estimated parameters is commonly used as a criterion for the recovery of item

parameters in simulation studies. The RMSE is the square root of the average of the

squared deviations of estimated parameters from the corresponding true ones.

In practice, the estimates of item parameters are usually treated as fixed in any further

analysis of response data, such as estimating abilities of examinees. In the process of such

an analysis, the IRF is more directly relevant than item parameters themselves since most

operational statistical analysis is based on the likelihood function formed by the IRFs.

In addition, different sets of item parameters may produce very close item characteristic

curves or surfaces. Therefore, it is more appropriate to check the closeness of estimated IRF

(curves or surfaces) to the true IRF than the item parameter estimates to the true values.

The estimated IRF, denoted as P̂i(θ), is the IRF with the estimated item parameters. The

RMSE of P̂i(θ) is the Euclidean distance between the estimated IRF and its corresponding

true IRF:

Di =

√
E{[P̂i(Θ)− Pi(Θ)]2},

where the expectation E is respect to the latent ability vector Θ. Or

Di =

√∫
[P̂i(θ)− Pi(θ)]2ϕ(θ | Σ)dθ, (15)

where ϕ(θ | Σ) is the density function of the latent ability vector and Σ is its correlation

matrix. Clearly, the smaller the RMSE, the better the estimator is. If the density function
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of the latent ability vector is ϕ(θ1, θ2 | ρ) given by (12) for a two-dimensional case, then the

RMSE of an estimated IRF is

Di =

√∫ ∫
[P̂i(θ1, θ2)− Pi(θ1, θ2)]2ϕ(θ1, θ2 | ρ)dθ1dθ2. (16)

For a unidimensional case, (15) can be simplified as

Di =

√∫
[P̂i(θ)− Pi(θ)]2ϕ(θ)dθ, (17)

where Pi(θ) is the unidimensional 2PL or 3PL model and ϕ(θ) is the standard normal

distribution in this paper.

4.1 A Unidimensional Case

Although it is designed to estimate item parameters for multidimensional models,

the EM-GA algorithm can also be used to estimate item parameters for unidimensional

models. Here, a single simulated case is presented as an example to show the performance

of ASSEST in a unidimensional case.

In this study, the estimated item parameters of 25 dichotomously scored physical

science items from the 1996 NAEP advanced science assessment were used as true item

parameters to generate simulated response data. Among those 25 items, there are 7 short

constructed response items modeled by 2PL models in the NAEP operational analysis and

18 multiple-choice items modeled by 3PL models. These item parameters were obtained

from the NAEP BILOG/PARSCALE program, which is an item parameter estimation

program that combines Mislevy and Bock’s (1982) BILOG and Muraki and Bock’s (1991)

PARSCALE computer programs. For convenience, BILOG was used to represent the NAEP

BILOG/PARSCALE program in this paper.

The number of simulated examinees was 2,000. Examinees’ ability scores were

generated independently from a standard normal distribution. Simulated response data

were generated using the following (standard) IRT method. Given ability score θj (or

θj = (θ1j, θ2j) for a two-dimensional case below), first calculate the probability of answering

item i correctly by examinee j, pij = Pi(θj), using the true item parameters from Table 1
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(or Table 2 for two-dimensional cases). Then independently generate a random number r

from the (0, 1) uniform distribution. If r < pij, then a correct response was obtained for

examinee j on item i; otherwise, an incorrect response was obtained.

Both ASSEST and BILOG were used to recover the item parameters with a simulated

2000× 25 response data set. In both runs, the ability distribution was fixed to be standard

normal. The two sets of item parameter estimates from ASSEST and BILOG, along

with the true item parameters, are given in Table 1. The last two columns present the

RMSEs of estimated IRFs from both ASSEST and BILOG using (17). Their means and

standard deviations are about the same, 0.017 and 0.009, respectively (see the last two

numbers in the last two columns of Table 1). The second to last row presents the sample

correlation coefficients between the estimated and true item parameters, which range from

0.8256 to 0.9911, indicating they are highly correlated. The last row of Table 1 gives the

RMSE of estimated item parameters within the test for the discrimination, difficulty, and

lower-asymptote parameters; that is,
√

1
n

∑n
i=1(γ̂i − γi)2 for γi = ai, bi or ci. Note that for

items modeled by 2PL models, the lower-asymptote parameters were fixed at zero. Thus,

here n = 25 for the a and b parameters and n = 18 for the c parameter.

Figure 2 shows four typical examples of item characteristic curves (ICC). There are

three curves in each plot for each selected item: the solid curve is the true ICC, the dotted

one is the estimated ICC from ASSEST, and the dashed one is the estimated ICC from

BILOG. The first plot (Item 6) gives a typical good-fit example for both ASSEST and

BILOG. The second plot (Item 7) presents an example of good-fit for BILOG but not for

ASSEST, while the third plot (Item 15) shows that ASSEST provides a better estimation

than BILOG. And the fourth plot (Item 8) presents an example of bad-fit from both

programs.
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Table 1

True Estimated Item Parameters and RMSE of Estimated IRFs From

ASSEST and BILOG for a Unidimensional Test

a b c RMSE of IRF

Item T A B T A B T A B A B

1 0.310 0.426 0.333 0.450 0.727 0.184 0.268 0.342 0.235 0.014 0.013

2 0.696 0.729 0.685 -0.014 -0.092 -0.174 0.292 0.271 0.259 0.011 0.014

3 0.828 0.724 0.922 -0.797 -1.037 -0.675 0.195 0.080 0.202 0.010 0.021

4 0.528 0.544 0.619 1.673 1.621 1.573 0.000 0.000 0.000 0.004 0.020

5 0.442 0.416 0.503 0.265 0.305 0.314 0.000 0.000 0.000 0.009 0.022

6 0.918 0.988 0.921 -0.027 -0.047 0.037 0.000 0.000 0.000 0.013 0.019

7 1.159 1.634 1.212 1.215 1.204 1.238 0.107 0.127 0.112 0.030 0.007

8 1.248 1.613 0.798 2.132 2.093 2.318 0.199 0.216 0.196 0.014 0.028

9 1.071 1.398 0.867 1.243 1.300 1.248 0.281 0.314 0.252 0.020 0.015

10 0.777 1.266 0.599 1.513 1.557 1.440 0.289 0.318 0.237 0.035 0.016

11 0.556 0.599 0.625 -2.060 -1.900 -1.843 0.241 0.298 0.206 0.005 0.020

12 0.774 0.848 0.784 -0.855 -0.900 -0.846 0.000 0.000 0.000 0.022 0.002

13 0.586 0.626 0.577 -0.334 -0.190 -0.573 0.281 0.351 0.217 0.014 0.014

14 0.694 0.818 0.555 0.160 0.159 0.193 0.211 0.197 0.201 0.026 0.026

15 0.740 0.768 0.886 0.569 0.627 0.493 0.366 0.380 0.313 0.004 0.044

16 0.894 0.670 0.863 0.924 0.695 1.086 0.200 0.120 0.221 0.028 0.022

17 0.566 0.475 0.503 1.182 1.327 1.211 0.000 0.000 0.000 0.022 0.018

18 0.759 1.071 0.549 1.816 1.847 2.078 0.271 0.297 0.228 0.022 0.027

19 0.863 0.993 0.868 1.878 1.763 1.905 0.000 0.000 0.000 0.015 0.005

20 1.404 1.537 1.202 2.067 2.061 2.248 0.112 0.125 0.116 0.010 0.017

21 0.837 1.126 0.883 1.487 1.448 1.498 0.112 0.131 0.115 0.024 0.007

22 0.855 0.715 0.829 -1.648 -1.984 -1.741 0.250 0.176 0.203 0.016 0.002

23 0.498 0.509 0.515 -0.847 -0.457 -0.927 0.241 0.391 0.201 0.023 0.008

24 0.603 0.609 0.501 0.276 0.545 -0.176 0.352 0.409 0.209 0.017 0.019

25 0.423 0.415 0.482 0.077 0.079 0.075 0.000 0.000 0.000 0.002 0.018

Mean 0.762 0.861 0.724 0.494 0.510 0.488 0.238 0.253 0.207 0.017 0.017

SD 0.266 0.380 0.223 1.155 1.159 1.195 0.075 0.107 0.051 0.009 0.009

Corra - 0.900 0.866 - 0.990 0.991 - 0.826 0.890 - -

RMSE - 0.205 0.135 - 0.159 0.159 - 0.062 0.047 - -

Note. T is true. A is ASSEST. B is BILOG.
a Sample correlation between estimated and true item parameters.
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Figure 2. Four typical examples of estimated ICCs from ASSEST and BILOG.

Although ASSEST seems to overestimate item parameters whereas BILOG seems

to underestimate them for the simulated response data according to Table 1, these two

programs gave approximately the same level of accuracy in estimating item parameters and

IRFs. Under the unidimensional assumption, ASSEST is similar to the program developed

by Jiang and Tang (1998). Interested readers can find more unidimensional results in that

paper.
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4.2 Two-Dimensional Cases

The numbers of items in the following simulated two-dimensional tests are 30, 46, or

62. The estimated item parameters of dichotomous items from the analysis of the 1998

NAEP grade 4 reading assessment (see Appendix E of Allen, Donoghue, & Schoeps, 2001)

were used as true item parameters in this simulation. There are 31 dichotomous items

measuring the first subscale of reading for literary experience and 32 dichotomous items

measuring the second subscale of reading to gain information. A bad item in the second

scale with b = 3.921 was dropped from our simulation studies. Therefore, there is a total of

62 items with 35 multiple-choice and 27 constructed-response items. Note that all NAEP

items are modeled by unidimensional models and the whole test has simple structure.

To make a test with mixed structure, 22 items were selected to become mixed items by

adding positive values as their other discrimination parameters. Thus, the total number

of items is 62 with 40 pure and 22 mixed items. For completeness, these item parameters

are presented in Table 2. For tests with 30 or 46 items, the first 15 or 23 items from each

subscale were chosen. For instance, the items in the 30-item test are Items 1-15 and Items

32-46 in Table 2. Note that a shorter test is a subtest of a longer test. The numbers of

mixed items in the 30-item and 46-item tests are 10 and 16, respectively. Note also that no

semimixed items were specified and used in the simulation study.

The number of simulated examinees was 1,000, 3,000, or 5,000 in this study. Examinees’

true ability scores were generated independently from a bivariate normal distribution with

mean of 0, variance of 1, and correlation of 0.5 or 0.8. Note that the estimated correlation

coefficients between subscales in NAEP assessments are usually around 0.8 (see Allen,

Carlson, & Zelenak, 1999; Allen et al., 2001), and the typical correlation coefficient is 0.5

between math and verbal in an achievement test with math and verbal sections, such as the

SAT r©.

In summary, the following three factors were considered in this simulation study:

1. the number of items: 30, 46, or 62 with 10, 16, or 22 mixed items, respectively;

2. the number of simulated examinees: 1,000, 3,000, or 5,000; and

3. the correlation coefficient between two subscales: 0.5 or 0.8.

Given these three factors, there were 18 combinations or cases in this simulation. For each

case, ASSEST was applied to a simulated response data set to get parameter estimates.

This process was repeated 100 times for each case.
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Table 2

Item Parameters Used in the Two-Dimensional Cases

First subscale Second subscale

Item a1 a2 b c Item a1 a2 b c

1 0.623 0.000 -0.872 0.000 32 0.000 0.269 -0.904 0.000

2 1.506 0.000 -0.495 0.215 33 0.000 0.941 0.401 0.264

3 0.920 0.000 1.008 0.000 34 0.000 0.793 0.642 0.247

4 0.607 0.000 0.712 0.251 35 0.000 1.032 0.507 0.248

5 1.052 0.000 1.009 0.000 36 0.000 1.172 0.645 0.000

6 1.288 0.000 0.554 0.190 37 0.000 0.533 -0.835 0.218

7 1.798 0.000 -0.899 0.248 38 0.000 0.877 -0.523 0.000

8 0.754 0.000 0.015 0.000 39 0.000 1.203 0.257 0.165

9 1.342 0.000 -0.457 0.175 40 0.000 0.761 -1.242 0.000

10 0.763 0.000 -0.284 0.000 41 0.000 1.104 -0.155 0.247

11 1.110 0.565 0.148 0.244 42 0.412 0.619 -1.113 0.000

12 1.025 0.734 0.107 0.000 43 0.657 1.154 0.645 0.000

13 1.228 0.487 0.259 0.247 44 0.406 1.464 0.774 0.138

14 0.647 0.550 -1.008 0.000 45 0.578 1.536 1.192 0.000

15 0.520 0.387 -1.425 0.000 46 0.373 0.597 1.341 0.000

16 0.951 0.000 -0.864 0.319 47 0.000 2.300 0.416 0.264

17 0.757 0.000 -0.630 0.000 48 0.000 0.562 -0.073 0.237

18 0.832 0.000 1.118 0.000 49 0.000 0.970 0.906 0.000

19 1.472 0.000 1.204 0.167 50 0.000 0.883 -1.015 0.310

20 1.859 0.000 0.213 0.265 51 0.000 1.261 1.084 0.206

21 1.123 0.821 1.057 0.000 52 0.503 0.597 -0.206 0.156

22 1.133 0.528 0.916 0.297 53 0.438 0.938 -1.691 0.294

23 1.374 0.442 0.307 0.269 54 0.631 1.086 -0.060 0.000

24 0.504 0.000 -0.932 0.247 55 0.000 0.795 -0.238 0.000

25 1.415 0.000 0.891 0.271 56 0.000 1.414 -0.608 0.275

26 2.303 0.000 0.609 0.418 57 0.000 0.838 -0.076 0.000

27 0.814 0.000 0.306 0.000 58 0.000 1.185 -0.590 0.312

28 0.966 0.000 -1.318 0.244 59 0.000 1.031 -0.310 0.000

29 0.506 0.476 -1.272 0.000 60 0.395 0.579 -0.688 0.276

30 1.029 0.368 0.327 0.300 61 0.783 0.970 -0.502 0.270

31 0.721 0.533 -1.193 0.247 62 0.569 1.002 -0.530 0.000
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In this simulation, the RMSE of estimated parameters was calculated in a regular way,

which is different from the RMSE used in the unidimensional case without replications. Let

γi represent a parameter of item i, aik, bi, or ci, and γ̂ij be the estimate of γi from the jth

replications for i = 1, . . . , n and j = 1, . . . , J . Here n is the number of items and J is the

number of replications (J = 100 in the simulation study). For each item parameter, define

RMSE(γi) =

√√√√ 1

J

J∑
j=1

(γ̂ij − γi)2.

These RMSEs are usually further summarized as the average of the RMSEs, ARMSE, for

each type of item parameter. There are four types of item parameters, two discrimination

parameters ak (k = 1, 2), the difficulty parameter b, and the lower-asymptote parameter c

for multiple-choice items. The ARMSE is defined as

ARMSE(γ) =
1

#Sγ

∑
i∈Sγ

RMSR(γi) =
1

#Sγ

∑
i∈Sγ

√√√√ 1

J

J∑
j=1

(γ̂ij − γi)2, (18)

where γ represents one of the four types of item parameters, Sγ is the set of item sequence

numbers where parameter γ needs to be estimated and #Sγ is the number of elements in

Sγ. Note that only those item parameters that need to be estimated are included in the

ARMSE calculation; that is, item parameters that are fixed as zero are excluded in the

calculation. If γ is the lower-asymptote parameter, for example, then Sc = {i: item i is a

multiple-choice item, 1 ≤ i ≤ n} and #Sc is the number of items modeled by M3PL models.

Similarly, the average of RMSEs of estimated IRFs among the items in a test across

all replications will be used as an overall measure of the accuracy of the estimation. The

overall average d̄ = 1
nJ

∑n
i=1

∑J
j=1 dij is called the ARMSE of estimated IRFs, where dij is

the RMSE of estimated ith IRF in the jth replication given by (16).

Table 3 presents the ARMSEs of the estimated item parameters and IRFs. Columns 4-7

are the ARMSEs for the four types of item parameters and the last column is the ARMSE

of the estimated IRFs. As expected, when the correlation between subscales and the

number of items are fixed, the ARMSE decreases as the number of examinees increases.

That is, the larger the number of examinees, the better the estimates are. When both the

numbers of examinees and items are fixed, the ARMSE of IRFs increases as the correlation
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between subscales increases from 0.5 to 0.8. This is also true for the ARMSEs of the

estimated item parameters in most cases considered here.

Table 3

ARMSE of Estimated Item Parameters and IRFs Based on 100 Replications

n m ρ a1 a2 b c IRF

1,000 0.5 0.1536 0.1486 0.1242 0.0705 0.0244

0.8 0.1764 0.1687 0.1240 0.0709 0.0248

30 3,000 0.5 0.0856 0.0828 0.0772 0.0422 0.0149

0.8 0.1059 0.0969 0.0791 0.0435 0.0153

5,000 0.5 0.0698 0.0636 0.0644 0.0358 0.0119

0.8 0.0846 0.0810 0.0639 0.0350 0.0123

1,000 0.5 0.1578 0.1483 0.1278 0.0710 0.0246

0.8 0.1834 0.1725 0.1285 0.0699 0.0253

46 3,000 0.5 0.0922 0.0892 0.0870 0.0465 0.0159

0.8 0.1111 0.1030 0.0877 0.0448 0.0166

5,000 0.5 0.0744 0.0710 0.0728 0.0371 0.0134

0.8 0.0904 0.0820 0.0758 0.0366 0.0142

1,000 0.5 0.1630 0.1431 0.1306 0.0757 0.0244

0.8 0.1905 0.1742 0.1311 0.0738 0.0254

62 3,000 0.5 0.0967 0.0895 0.0893 0.0494 0.0157

0.8 0.1180 0.1075 0.0906 0.0467 0.0167

5,000 0.5 0.0782 0.0721 0.0746 0.0401 0.0128

0.8 0.0959 0.0883 0.0784 0.0387 0.0141

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.

As in the unidimensional case, the sample correlation coefficients between the

estimated and true item parameters were calculated for the discrimination, difficulty, and
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lower-asymptote parameters within each replication. Their averages, over 100 replications,

are presented in Table 4. Note that item parameters fixed to be zero are excluded in the

calculation of the sample correlation coefficients. These sample correlation coefficients

are pretty high for the discrimination and difficulty parameters, but relatively low for the

lower-asymptote parameter. As the number of examinees increases, the sample correlation

coefficients between the estimated and true item parameters also increase. However, the

number of items in the range considered here has little impact on the average of the sample

correlation coefficients between the estimated and true item parameters.

The correlation coefficients between subscales were estimated during the estimation of

item parameters. These estimates are pretty close to their corresponding true correlations.

The RMSE of estimated correlations based on 100 replications is listed in the last column

of Table 5. As shown in Table 5, the largest RMSE is 0.0240, which appears in the

30-item 1,000-examinee 0.5-correlation case, while the smallest RMSE is 0.0073 in the case

of 46 items, 5,000 examinees, and 0.8 correlation. Generally speaking, the greater the

number of examinees, the better the estimated correlation is. The RMSEs at correlation

of 0.8 are smaller than those at correlation of 0.5, which is possibly due the nature of

correlation coefficients that have larger variations in the middle than near the upper or

lower bounds. However, the impact of test length on the estimation of the correlation is not

so straightforward. When both the number of examinees and the correlation between two

subscales are fixed, 46-item tests have the smaller RMSE than 30-item and 62-item tests

five out of six cases.

It should be noted that all results reported above were obtained under the assumption

that the test structure was known; that is, both pure and mixed items were correctly

identified. Recall that a pure item has one and only one positive discrimination parameter.

When an item is specified as a pure item in an ASSEST run, one discrimination parameter

is estimated while the other discrimination parameter is fixed at zero in a two-dimensional

case. When an item is specified as a mixed item, both discrimination parameters are

estimated. In practice, it is essential that a dimensionality analysis be performed before the

calibration. However, it is still quite possible that some items will be classified incorrectly.

To explore the consequence of the misclassification, all the above ASSEST runs were

replicated using the same response data sets but with some items misspecified. Two
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situations are investigated in this paper: (a) all mixed items are specified as pure items in

their dominant subscale or (b) some pure items are specified as mixed items.

Table 4

The Average of Sample Correlations Between Estimated and True Item

Parameters Based on 100 Replications

n m ρ a1 a2 b c

1,000 0.5 0.9320 0.9203 0.9816 0.4159

0.8 0.9172 0.8923 0.9828 0.4225

30 3,000 0.5 0.9773 0.9721 0.9927 0.6292

0.8 0.9647 0.9589 0.9918 0.6048

5,000 0.5 0.9838 0.9838 0.9946 0.6766

0.8 0.9780 0.9707 0.9945 0.6795

1,000 0.5 0.9337 0.9387 0.9827 0.4370

0.8 0.9161 0.9183 0.9830 0.4601

46 3,000 0.5 0.9748 0.9771 0.9918 0.6314

0.8 0.9660 0.9695 0.9918 0.6527

5,000 0.5 0.9844 0.9861 0.9947 0.7189

0.8 0.9783 0.9816 0.9943 0.7286

1,000 0.5 0.9335 0.9406 0.9800 0.4802

0.8 0.9180 0.9156 0.9800 0.5019

62 3,000 0.5 0.9765 0.9780 0.9900 0.6533

0.8 0.9691 0.9695 0.9906 0.6870

5,000 0.5 0.9851 0.9864 0.9931 0.7270

0.8 0.9812 0.9810 0.9932 0.7477

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.
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Table 5

Average of True and Estimated Correlations Between Abilities and RMSE of

Estimated Correlations Based on 100 Replications

n m ρ True abilities’ Average est. RMSE of

Corr. (their SD) Corr. (their SD) Est. corr.

1,000 0.5 0.5019 (0.0222) 0.5032 (0.0342) 0.0240

0.8 0.8000 (0.0101) 0.7876 (0.0192) 0.0221

30 3,000 0.5 0.5008 (0.0139) 0.5017 (0.0214) 0.0146

0.8 0.7991 (0.0063) 0.7890 (0.0114) 0.0146

5,000 0.5 0.4999 (0.0112) 0.4994 (0.0175) 0.0133

0.8 0.7996 (0.0060) 0.7906 (0.0098) 0.0122

1,000 0.5 0.5019 (0.0222) 0.5098 (0.0318) 0.0210

0.8 0.8000 (0.0101) 0.8028 (0.0167) 0.0149

46 3,000 0.5 0.5008 (0.0139) 0.5100 (0.0201) 0.0156

0.8 0.7991 (0.0063) 0.8029 (0.0100) 0.0091

5,000 0.5 0.4999 (0.0112) 0.5077 (0.0156) 0.0132

0.8 0.7996 (0.0060) 0.8038 (0.0081) 0.0073

1,000 0.5 0.5019 (0.0222) 0.5187 (0.0294) 0.0236

0.8 0.8000 (0.0101) 0.8118 (0.0142) 0.0166

62 3,000 0.5 0.5008 (0.0139) 0.5181 (0.0181) 0.0199

0.8 0.7991 (0.0063) 0.8121 (0.0085) 0.0145

5,000 0.5 0.4999 (0.0112) 0.5144 (0.0146) 0.0172

0.8 0.7996 (0.0060) 0.8121 (0.0078) 0.0135

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.

First, ASSEST was applied to the same simulated response data as the original

simulation study but with all mixed items treated (incorrectly) as pure items. That is,

these simulated data were calibrated again as simple structure tests. The new results were
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summarized in Table 6. The true abilities’ correlations and their standard deviations in

column 4 of Table 6 are the same as those in Table 5 because the same response data were

used. Those numbers are placed in Table 6 for the readers’ convenience. The new ARMSE

of the estimated IRFs have increased (comparing the last column of Table 6 to that of

Table 3). For instance, the ARMSE of the estimated IRFs is now 0.0415 in the case of 30

items, 5,000 examinees and 0.5 correlation, whereas the corresponding one in Table 3 is

0.0119, where all mixed items were correctly identified. In most cases considered in the

simulation study, the new ARMSE of the estimated IRFs has more than doubled in size

over those from the original runs.

When mixed items were incorrectly specified as pure items, the estimated correlations

between subscales had a big positive bias. The new average estimated correlation between

subscales was much larger than the original average of estimated correlations and the

true correlation (see the fifth columns in Tables 5 and 6). For example, the new average

estimated correlation is 0.7411 in the case of 30 items, 5,000 examinees and 0.5 correlation,

while the original average estimated one is 0.4994 and the true one is 0.4999. Because

the mixed items were incorrectly specified as pure items, ASSEST actually calibrated two

composites, which were the combinations of the target subscales. These two composite

subscales leaned closer to each other than the target subscales did. Not surprisingly,

the correlation between the two subscales was overestimated. This issue was further

investigated. For details, see Zhang (2004). Consequently, the RMSE of the estimated

correlations also dramatically increased (comparing the second to last column of Table 6

with the last column of Table 5). For instance, the RMSE of the estimated correlations is

now 0.2415 in the case of 30 items, 5,000 examinees, and 0.5 correlation, while the original

one with the correct identification of mixed items is 0.0133. These results indicate that it is

inappropriate to treat a test with mixed structure as a simple structure test. However, the

consequence of wrong mixed item identifications is less severe for a highly correlated case

(ρ = 0.8) than a moderately correlated case (ρ = 0.5).
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Table 6

Average of True and Estimated Correlations Between Abilities and RMSE of

Estimated Correlations and IRFs With All Mixed Items as Pure Based on

100 Replications

n m ρ True abilities’ Average est. RMSE of ARMSE of

Corr. (their SD) Corr. (their SD) Est. corr. Est. IRF

1,000 0.5 0.5019 (0.0222) 0.7442 (0.0223) 0.2431 0.0493

0.8 0.8000 (0.0101) 0.8959 (0.0103) 0.0966 0.0385

30 3,000 0.5 0.5008 (0.0139) 0.7435 (0.0121) 0.2428 0.0433

0.8 0.7991 (0.0063) 0.8970 (0.0065) 0.0982 0.0323

5,000 0.5 0.4999 (0.0112) 0.7411 (0.0103) 0.2415 0.0415

0.8 0.7996 (0.0060) 0.8972 (0.0051) 0.0978 0.0303

1,000 0.5 0.5019 (0.0222) 0.7617 (0.0192) 0.2604 0.0496

0.8 0.8000 (0.0101) 0.9109 (0.0082) 0.1113 0.0391

46 3,000 0.5 0.5008 (0.0139) 0.7617 (0.0112) 0.2610 0.0439

0.8 0.7991 (0.0063) 0.9112 (0.0051) 0.1122 0.0329

5,000 0.5 0.4999 (0.0112) 0.7602 (0.0089) 0.2605 0.0422

0.8 0.7996 (0.0060) 0.9115 (0.0043) 0.1120 0.0310

1,000 0.5 0.5019 (0.0222) 0.7651 (0.0173) 0.2636 0.0492

0.8 0.8000 (0.0101) 0.9159 (0.0074) 0.1162 0.0387

62 3,000 0.5 0.5008 (0.0139) 0.7650 (0.0101) 0.2643 0.0431

0.8 0.7991 (0.0063) 0.9160 (0.0046) 0.1171 0.0324

5,000 0.5 0.4999 (0.0112) 0.7626 (0.0084) 0.2629 0.0413

0.8 0.7996 (0.0060) 0.9161 (0.0038) 0.1166 0.0305

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.

Next, consider the opposite situation to that above: some pure items are specified

as mixed items. Specifically, 8 pure items, Items 9, 10, 20, 28, 40, 41, 51, and 59, were

specified as mixed items in the next simulation study, whenever they were included in the
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tests. Therefore, there were 4, 6, and 8 pure items that were specified as mixed items in

the 30-item, 46-item, and 62-item tests, respectively. The results from the third simulation

study are summarized in Tables 7 through 9. These tables are parallel to Tables 3-5, where

all items were specified correctly according to their structure. Those pure items that were

specified as mixed items got slightly worse estimation results than the results from the

original simulation. The ARMSEs of the estimated IRFs all slightly increased when some

pure items were specified as mixed items (see the last columns of Tables 3 and 7). For the

pure items that were specified as mixed, the estimates of the discrimination parameter that

would have been zero had the items been appropriately treated as pure turned out to be

very small (typically around 0.25 or less). The correlations between true and estimated

item parameters have no big changes (compare Table 8 with Table 4). These correlations

even increased for discrimination parameters from the original simulation mainly due to

the fact that the estimates of the zero discrimination parameters are pretty close to zero.

The RMSE of estimated correlations between subscales only increased for 30-item cases

but decreased for 62-item cases (see the last columns of Tables 5 and 9). Overall, all

results remain approximately the same when comparing Tables 7-9 with Tables 3-5, which

indicates the robustness of ASSEST. Note that in this simulation study the percentage of

misspecified pure items is 20%. If more pure items are misspecified, then the estimation

results will become worse.

Note that the purpose of the EM-GA algorithm is to search for MMLEs of item

parameters. Thus, the ideal criterion to judging the algorithm is to check whether the

maximum marginal likelihood value occurs at the estimates found by ASSEST, or whether

these estimates are really optimal points of the marginal likelihood function. The dilemma

is that the EM-GA algorithm is actually used because it is extremely difficult to search for

these optimal points. Instead, one may compare the marginal likelihood value found by

ASSEST with the corresponding marginal likelihood value at the true parameters. If the

marginal likelihood value at parameter estimates is larger than the corresponding marginal

likelihood value at the true parameters when models are correctly specified, then the search

algorithm used to obtain the parameter estimates may be judged good enough.
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Table 7

ARMSE of Estimated Item Parameters and IRFs With Some Pure Items

As Mixed Based on 100 Replications

n m ρ a1 a2 b c IRF

1,000 0.5 0.1506 0.1423 0.1265 0.0718 0.0255

0.8 0.1775 0.1710 0.1251 0.0711 0.0263

30 3,000 0.5 0.0850 0.0817 0.0822 0.0438 0.0163

0.8 0.1136 0.1035 0.0818 0.0446 0.0169

5,000 0.5 0.0684 0.0625 0.0680 0.0356 0.0132

0.8 0.0905 0.0866 0.0682 0.0367 0.0140

1,000 0.5 0.1552 0.1433 0.1308 0.0720 0.0258

0.8 0.1826 0.1725 0.1316 0.0704 0.0267

46 3,000 0.5 0.0902 0.0881 0.0910 0.0466 0.0173

0.8 0.1122 0.1068 0.0914 0.0451 0.0180

5,000 0.5 0.0721 0.0695 0.0773 0.0377 0.0147

0.8 0.0907 0.0862 0.0791 0.0373 0.0153

1,000 0.5 0.1575 0.1388 0.1330 0.0755 0.0254

0.8 0.1856 0.1717 0.1334 0.0734 0.0265

62 3,000 0.5 0.0932 0.0876 0.0932 0.0493 0.0168

0.8 0.1137 0.1068 0.0944 0.0477 0.0178

5,000 0.5 0.0754 0.0703 0.0791 0.0411 0.0139

0.8 0.0918 0.0874 0.0810 0.0391 0.0149

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.
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Table 8

The Average of Sample Correlations Between Estimated and True Item

Parameters With Some Pure Items as Mixed Based on 100 Replications

n m ρ a1 a2 b c

1,000 0.5 0.9471 0.9421 0.9816 0.4062

0.8 0.9299 0.9141 0.9827 0.4280

30 3,000 0.5 0.9826 0.9799 0.9922 0.6076

0.8 0.9686 0.9661 0.9917 0.5911

5,000 0.5 0.9886 0.9883 0.9947 0.6818

0.8 0.9802 0.9766 0.9943 0.6596

1,000 0.5 0.9467 0.9530 0.9826 0.4288

0.8 0.9276 0.9324 0.9826 0.4505

46 3,000 0.5 0.9812 0.9827 0.9919 0.6248

0.8 0.9713 0.9739 0.9917 0.6512

5,000 0.5 0.9882 0.9895 0.9945 0.7067

0.8 0.9816 0.9835 0.9941 0.7220

1,000 0.5 0.9486 0.9554 0.9800 0.4812

0.8 0.9332 0.9326 0.9800 0.5078

62 3,000 0.5 0.9826 0.9837 0.9899 0.6566

0.8 0.9758 0.9759 0.9902 0.6747

5,000 0.5 0.9888 0.9900 0.9928 0.7178

0.8 0.9852 0.9848 0.9931 0.7430

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.
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Table 9

Average of True and Estimated Correlations Between Abilities and RMSE

of Estimated Correlations With Some Pure Items As Mixed Based on 100

Replications

n m ρ True abilities’ Average est. RMSE of

Corr. (their SD) Corr. (their SD) Est. corr.

1,000 0.5 0.5019 (0.0222) 0.4844 (0.0362) 0.0322

0.8 0.8000 (0.0101) 0.7698 (0.0220) 0.0369

30 3,000 0.5 0.5008 (0.0139) 0.4873 (0.0226) 0.0210

0.8 0.7991 (0.0063) 0.7727 (0.0125) 0.0286

5,000 0.5 0.4999 (0.0112) 0.4873 (0.0183) 0.0189

0.8 0.7996 (0.0060) 0.7755 (0.0105) 0.0256

1,000 0.5 0.5019 (0.0222) 0.4945 (0.0330) 0.0225

0.8 0.8000 (0.0101) 0.7888 (0.0183) 0.0194

46 3,000 0.5 0.5008 (0.0139) 0.5003 (0.0205) 0.0130

0.8 0.7991 (0.0063) 0.7918 (0.0110) 0.0116

5,000 0.5 0.4999 (0.0112) 0.5000 (0.0157) 0.0110

0.8 0.7996 (0.0060) 0.7941 (0.0087) 0.0083

1,000 0.5 0.5019 (0.0222) 0.5063 (0.0308) 0.0185

0.8 0.8000 (0.0101) 0.8008 (0.0157) 0.0128

62 3,000 0.5 0.5008 (0.0139) 0.5107 (0.0180) 0.0141

0.8 0.7991 (0.0063) 0.8046 (0.0091) 0.0089

5,000 0.5 0.4999 (0.0112) 0.5085 (0.0145) 0.0126

0.8 0.7996 (0.0060) 0.8059 (0.0081) 0.0083

Note. n is the number of items. m is the number of examinees. ρ is the correla-

tion coefficient between two subscales.
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The marginal likelihood values at the true parameters were calculated in all three

two-dimensional simulation studies. There are 18 different cases considered in each

simulation. Thus, there are 1,800 ASSEST runs in each simulation. In all of the 3,600

ASSEST runs where all mixed items were correctly identified (the first and third simulation

studies), the marginal likelihood values at the estimated item parameters found by ASSEST

are larger than the corresponding marginal likelihood values at the true parameters.

This result indicates that ASSEST has achieved the limitation of the marginal maximum

likelihood approach if items are correctly identified or are not very badly specified (e.g.,

only 20% of the pure items were specified as mixed items). At the same time, it also

shows that the EM-GA algorithm developed in this paper works fine. When some mixed

items were incorrectly specified as pure items (i.e., the second simulation), the marginal

maximum likelihood values found by ASSEST are all smaller than the corresponding

marginal likelihood values at the true parameters for the cases of ρ = 0.5 or the number

of examinees is 3,000 or 5,000. There are 174 runs out of 1,800 ASSEST runs where the

marginal maximum likelihood values found by ASSEST are larger than the corresponding

marginal likelihood values at the true parameters; all these happened when ρ = 0.8 and the

number of examinees is 1,000. This indicates that when the number of examinees is small

(e.g., 1,000), the marginal likelihood function is very noisy.

5. Discussion

In this paper, an EM-GA algorithm has been developed to estimate parameters for

MIRT models, especially for compensatory models with mixed structure. Simulation

studies show that the EM-GA based program, ASSEST, yields quite satisfactory results.

Zhang and Lu (2001) compared ASSEST with NOHARM (Fraser & McDonald, 1988) using

simulated two-dimensional response data. Their results demonstrate that both ASSEST

and NOHARM yield satisfactory estimates of item parameters for compensatory models

when the numbers of items and examinees are large enough, and the performance of

ASSEST is at least as good as NOHARM for multidimensional compensatory two-parameter

logistic models. Recently, Zhang and Stone (2004) reached a similar conclusion when

comparing ASSEST with NOHARM. While NOHARM only deals with multidimensional

compensatory two-parameter normal ogive models (which are very close to M2PL models
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in nature, and their corresponding parameters are comparable), ASSEST not only lets a

user choose a M3PL or a M2PL model for each item in a test but also lets a user specify

special mixed items, called semimixed, as an option. Recall that a semimixed item, as

defined in Section 2, is a one-subscale dominated item; that is, it measures one subscale

more heavily than other subscales. Zhang and Lu (2002) further expanded the capacity of

the algorithm to estimate the parameters of multidimensional noncompensatory models,

introduced by Sympson (1987). Their simulation results showed that ASSEST also yielded

quite satisfactory estimation results for the noncompensatory models. The simulation

results reported in this paper, as well as other simulated data analyses, demonstrate that

the EM-GA algorithm is a very promising approach to estimating MIRT models. The

major disadvantage of the EM-GA algorithm is that it requires extensive computational

time. The CPU time on a Pentium 2.26 GHz PC for the case of 5,000 examinees and 62

items was about 11 to 15 minutes in the simulation studies. The applications of the EM-GA

algorithm to other MIRT models are under investigation.

The main advantage of the mixed structure approach, when compared to an exploratory

multidimensional approach, is that the calibrated subscales have substantive meanings,

such as algebra and geometry in a mathematics test. The interpretation of the subscales, of

course, depends on pure items; subscales are what these pure items measure. Therefore, it is

crucial to classify items correctly into pure and mixed items when using the mixed-structure

approach to calibrate a test. When an item is specified as a pure or a semimixed item,

ASSEST actually uses the prior information on the item, either from its context or from

data analysis. A test framework usually specifies what subscales the test tries to measure.

Thus, the classification can be typically done by using expert opinion. Expert opinion

may also be incorporated with information from a dimensionality analysis of the test item

response data. In general, dimensionality analysis together with expert opinion should

lead to a satisfactory classification of pure and mixed items used in the mixed-structure

approach. In addition, ASSEST can be used in sequence to get an optimal classification

of items as mixed or pure. In the first ASSEST run, every item can be considered as a

pure item, unless there is some evidence it is not, either from statistical analysis or expert

opinion. After the first run, any items specified as mixed items with only one moderate

or large discrimination parameter and very small other discrimination parameters in a
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compensatory model may be considered as pure items, and any items specified as pure

items with bad model-fit may be specified as mixed items in the second run, and so on.

In this process, estimated correlations between subscales may serve as an indicator of

goodness of classification of pure and mixed items. If some mixed items are incorrectly

classified as pure items in calibration, the correlation coefficients actually estimated are

larger than the corresponding target correlation coefficients between subscales, according

to Theorem 3 of Zhang (2004), which is also confirmed by the second two-dimensional

simulation study presented in Section 4. Only when all mixed items are correctly identified

are the correlation coefficients to be estimated the target ones. The classification with

relatively small estimated correlations among all plausible different mixed-item selections

can be regarded as the optimal classification of items. In the process, item contexts and/or

contents should always be considered when determining an item to be a pure, a semimixed,

or a mixed item.
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